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Abstract

We propose using the Moore-Penrose pseudoinverse and
singular value decomposition to process ES/D magnet survey
data. For the case of a maximally symmetric circular
ring these become equivalent to performing harmonic analysis
on the data, but they have the advantage of being applicable
to arbitrarily configured lattices. Using the pseudoinverse,
we examine the effects of random measurement errors ion
closed orbits. This suggests a criterion for deciding
whether survey data are sufficiently good to justify
repositioning magnets.
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Section 1 Introduction

A careful survey of the Fermilab main ring has been
completed recently, and it is now incumbent on us to do some-
thing constructive with these data. The markings for
the survey comprised a set of small, circular disks, what
Thornton Murphy calls ''sticky-backs', that were glued to
the main ring floor in (presumably) well defined positiomns
relative to the old station marks, many of the latter
being no longer visible due to the installation of ES/D
superconducting magnets. These new sticky-backs are to
serve as sign posts for the Tevatron ring; accordingly,
it is of some importance to know where they are.

The answer to that question lies buried in the survey
data. Bringing it to the surface is complicated by the
observation that the measurements are all relative:
specifically, sagittal offsets and next-nearest-neighbor chords.
Without a referent external to the ring it is impossible to
calculate "absolute'" positions, and this must be taken into
account. Traditionally, this has been done by Fourier
analyzing the data relative to site number around the ring
and either throwing away or tailoring information in the low
harmonic terms. The power of applying Fourier analysis to
this problem, or to most other problems, derives from its
ability to decouple a large set of equations. Essentially,

each harmonic of the measurement data is excited by the
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same harmonic of positioning errors and no other. Thus, a

single complicated problem is divided into a large set of
easy subproblems that can be solved in closed form. How-
ever, the drawback of this approach is that it is strictly

correct only when the magnets are designed to be symmetrically

positioned on a circle. It is not strictly correct for a

more general configuration: a single Fourier harmonic in
the measurement data will in general influence all positional
harmonics, and vice versa.

Fortunately, Fourier analysis possesses natural
extensions that are more general. One is embodied here in
finding the Moore-Penrose pseudoinverse of the measurement
Jacobian, or geodetic matrix: ©d(data)/d(positions). 1In
the next two sections of this memo we will formulate the
problem more precisely, define the pseudoinverse, and
briefly discuss some of its useful properties.

Random errors in the survey data will induce residual
errors in the final placement of magnets which, unlike the
original errors, will be correlated from site to site.

These in turn will affect the closed-beam orbit, and it is
of some interest to examine the relationship between orbit
deviations and measurement errors. This is done in

Sec.4 for a simple model in order to illustrate the

method. Use of the pseudoinverse in this problem was

tested numerically by applying it to the symmetric, circular

ring; the results are given in Sec.5.
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Now, a word about numbers that appear in the left-hand
margin. My first impulse upon proofreading a memo that has
just been typed almost invariably is to tear it up and start
over. There are reasons that make this impractical, not the
least of which is the transient nature of this document: It
simply is not worth rewriting. Nonetheless, there are
scattered here and there various instances of inadequate
explanations, misleading or ambiguous phraseology, dual
usage of a symbol, and so forth. Therefore, as a blanket
covering for such gaffes, a number of retrospective comments
are collected together in Sec.6 and cross indexed by
numbers in the left-hand margin of the memo. Think of them

as extended footnotes.

Section 2 The geodetic matrix

We will make a distinction between the magnets'
"positions" and their ''sites', the latter referring to their
designed positions. These are labelled Pk’ k =1...N with
indices increasing counter clockwise around the ring. Because
the ring is periodic, it will be convenient later to assume

the index set obeys a mod N arithmetic, so that P P, It

k+N
is not necessary that the sites be symmetrically located,
nor even that they lie on a circle. For the present discus-
sion, it is convenient for them to be at the vertices of a
convex polygon, but even this is not indispensable.

"Ring" refers to the set of all magnets being surveyed -

even if this is only a subset of all the magnets in the
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accelerator - and its ''state' to their positions. To keep
matters simple, we shall confine our deliberations to the
horizontal plane, but the formalism can be generalized easily
to three dimensions.

The ring's global state is to be estimated by patching
together data from a large number of local relative measure-
ments. There is some freedom in selecting the local geometric
quantitities to be used as survey variables. Usually in these
problems the sagittal offset, D, , and next-nearest neighbor
chord length, a, , are measured at each site Pk’ as illustrated
in Fig.(l). These could be supplemented or replaced by
alternates such as nearest-neighbor chords, Xp, OF angles
between the magnets' lines of sight. It is not likely that
the latter would be competitive with Dk measurement because
of the large base lines in the triangles. (For example,
nearest-neighbor chords in the main ring are +98' in length.
One would have to measure 6, to about 2 sec of arc in order
for it to compete with a direct measurement of Dk made with
n10 mils accuracy.) Measuring nearest-neighbor chords would
be of some use in damping out high azimuthal harmonics, as
will be seen in Sec.5. For the present, however, we
shall consider the set {(D, ak)} to contain the primary
survey variables.

The accuracy with which the ring's state can be estimated
is very sensitive to how one uses the information in the

data set. In the absence of measurement errors, these 2N
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Fig. 1. Primary survey variables. Only part of a ring of sites
is illustrated. Sagittal offset Dk and next-nearest neighbor
chord a, are indexed to correspond with site Pk' Nearest

neighbor chords, X s and angles, ¢k’ may be measured also,
but these are treated as secondary variables, acting as
redundancy checks on the primary ones.
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"

quantities would "almost always' suffice to locate the
positions exactly to within an isometry, i.e. rigid trans-
lations and rotations of the entire ring. (For the special
case of an even number of sites symmetrically placed on a
circle, a single nearest neighbor chord x, would also be
needed; we will see this explicitly later.) For example,
one could reconstruct the ring by recursively determining
Pk+l from Py, Pk—l’ and the data (Dk’ ak). The first position
Py and the direction from PO to P1 must be assigned arbitrarily,
and it would be necessary to measure X, directly in order
to place P1 correctly. The recursion would then go around
the ring, dropping off positions in its wake, until it
returns to PO where it closes on itself and stops. Unfortun-
ately, this method is unstable in that small measurement
errors results in large deviations in positions even for
moderate value of N, say N>30. The ring would not close.

To avoid this problem, we will solve for all positions
simultaneously rather than sequentially. This is not as
hard as it seems, because there already exists a design
solution that can be used as a zeroth order approximation.
Expanding to first order about the design linearizes the
problem, making it computationally tractable. Essentially,
differential displacements of the magnets result in
differential deviations of survey measurements from their
ideal values, those that they would have if the magnets

were positioned at their sites. To use this approach
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practically we must assume that the errors in originally
placing the magnets are small so that the linear approxi-
mation is reasonable.

A convenient way to coordinatize the problem is to
place a local (u,v) frame Fk at each site, oriented so that
one axis, say the v axis, is aligned along Pp_{Pp.;- The
other, the u axis, is orthogonal to it and points outward.
The positions of all the magnets is recorded in the state

vector
W= (Uq,Vq;Uy,Vy;Uq,Vq; U, V )T
1271722722732 732" 2 N’ 'NY T

The state w is an element of a real vector space, the '"state
space" W of the ring; that is W obeys the usual closure
axioms of a vector.space: the sum and difference of states
are states, and multiplying a state by a real number produces
another legitimate state.

At this point it is useful to introduce a block notation
that will be convenient later. We will use a subscripted
semicolon to separate '"outer' from "inner" indices: outer
indices will refer to the sites; inner, to the coordinates.

The 2N dimensional state vector w is indexed accordingly,

Wpg T U and Wy T Vi

If an index (usually the inner) is suppressed, then the
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Fig. 2. Frames and the state of the ring. (a) A frame, Fios is placed at
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each site in such a way that its axes are aligned along the direc-

tions of the primary variables. (b) Positions of the survey's

markers (magnets, sticky-backs, or whatever) are coordinatized

relative to these frames. Because the markers are not on their

sites, due to placement errors, the measured values of the survey

variables will be slightly different from their designed values.
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corresponding sub-vector or array is understood to be
represented. Suppression is accomplished either by blanking

or insertion of a dot ¢ into the index's location. Thus,

PR R ¥
> @, k
W, =w= col (W;l w’2 w,3 W,N)

(Here ''col' merely serves as a reminder that w is a 2Nxl
column matrix, although it is written as a row matrix to
save space - a motivation that has just been frustrated by
its explanation.). This notation will be helpful in
dealing with block matrices.

A i,y =1...2, k,% = 1...N.

ij;ka

According to the above conventions, A-k& would represent a

2

2x2 matrix, Aoj;kz a 2x1 array, and Ais;kz a 1x2 array.

Associated with each state w of the ring is a set of

measurement data,

- 2N
M = col (M;l M;2 M;3 ce M;N) e R

M;k = col (Dk ak) £ RZ.

Although it looks formally like a vector, M does not belong
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to a vector space: sums and differences of data sets are

not data sets, that is, they cannot in general arise from
a state of the ring. If the survey is thought of as a
mapping ¢ of the state space into the data space,

oW » s RV,

then the dimensionality of the manifold ¢(W) is smaller
than 2N. 1In fact, it can be no larger than 2N-3, due to
the fact that ¢ is not one-to-one; if Wl and WZ are

related by an isometry, then ¢(Wl) = ¢(W2). The fibers

'{¢—1(M)1Me¢(W)}€:W partition state space into equivalence

classes such that two states are in the same class provided
there is an isometry connecting them. Each ¢-1(M) is, of
course, itself a submanifold of W, but not a vector space.

Well...let's not get overheated. Global topological
properties of the manifold ¢ (W) undoubtedly would make
pleasing objects of contemplation, but with a view to doing
some calculations we must narrow our field of view to its
local behavior in the neighborhood of some point, M¥*e ¢(W).
Of course, M* is taken to be the survey data that would be
measured if the magnets were positioned at their sites. We
shall now remedy the inconvenience that ¢(W) is not a vector
space by constructing its tangent space at M*. The

geodetic matrix 2 is defined by the linear connection
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10

=
0

M* + Qw + higher order terms in w

R

M* 4+ Qw.

The 2Nx2N matrix Q linearly maps state space into the

tangent space at M*, whose elements are the '"differentials"

m = 0w, weW . (L

s

The definition relating m to differential forms dD, and

w

da; will bé given shortly.

To proceed with constructing Q, it is easiest to take

things a step at a time. First, the Wronskian B(Dkak)/a(ukvk)

is given by

(See Fig.3.) To calculate B(Dkak)/a(uk+1vk+l), use a two-
step process. First construct frames Fi+1 parallel to Fk'

Then multiply Wronskians:

-

Ue+l Y41 Ukl Vk+1
1
3(D a,) Dy 7o O Upgypp €088y, -singy .,
= =
(u v ) ' .
+
k+l “k+1 a; 0 1 Vi+l 51nek+l cosGk+1
—Oy cosek+l O sinek+l
= . (2)
51n6k+l cosek+l
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10.1

Fig. 3. Parallel translation of frames. The Wronskian a(Dk ak)/ 3(uk+1 Vk+1)
is calculated most easily in two steps. First the frame Fk is -

I
parallel translated to its neighboring sites, defining frames Fk+1 .

" These are connected to the sites' frames Fk+1 by a rotation.
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Here,<ﬁiis the ratio:

o = [P 1 PI/ P 1P|l o

where P is the intersection of the sagitta with the chord.

The angle 6k+l’ is the angle required to rotate Fk into

Fi1- A similar calculation at Py _,, yields the Wronskian
‘A - u
Ug-1  Vk-1 k-1 k-1
- L] .
Dy -0y 0 g cosd, sin®,
t .
ay 0 -1 V-1 -sinb, cosb,
-chosek —ak31n6k
sin®y ‘-cosb ,

where a+a = 1. All other Wronskians vanish. That is,

3(Dy ap)
for Im'k|>1, gzu—Ty =

m m

The factors o and o appearing in these expressions
are awkward. We can get rid of at least one of them by
absorption into the measurement variable. This can be
done in a way that makes the Wronskian (2) unitary by re-

placing dD, with '%dek' By linearity we can next combine



UPC-140
12

all these relations into one; viz,

5 (k)

o(K)

~ (k) (k) (k)
w w;k-l + Q W;k + w w;k+l ’
-de/ak
4
dak
cosek+l —sinek+l
. ’ (3)
51n8k+1 cosek+l
,ﬁgk/ak)cosek (&k/ak)sinek
[
sinek -cosek
—l/ak 0
0 0

The matrix w is orthogonal, but & is not, except for the

special case a = o = 1/2.

Provided that we accept the convention of site indices

obeying mod N arithmetic, the recursion in Eq.'s (3) is

satisfied for all k in the ring. By collecting them

together, we obtain the full matrix @ written in block form,

e

Q
&
0
Q = "

(1)
(2)

0
LM

o o 0 ... 0 gL
0l ) o .o 0
530 o3 43 o 0
0 0 0 < (N-1) é(N—l) 5 (N-1)
0 0 ... 0 N
P
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or in block components,
= ~(1) (1) (1) .
Qg = B 8y F O Sy F et 8y g B)

If the sites are designed to be equally spaced around
a circular ring, the problem becomes formally easier. We
will label this configuration CN, after the cyclic group
of order N. For CN the superscripts on the 2x2 sub-matrices

of Q can be dropped, since

: cosf -sinG;
Yk: w(k) = @ = '
sinB cosb
3] sin®

(K)o~ coSs

w( = W = i R (4)
sinb ~-cosf

. =2 0
o) =g =
0 0 .

Note that we also have O =a, = 1/2, for all k, so that

Both w and & are now orthogonal. In fact,

W= 0,0 = W
3 93

where 03 is the usual Pauli matrix. Further, each is a
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th

N~ root of unity

For the CN ring, each (block) row of © is obtained
from its predecessor by cyclically shifting the (block)
elements by one (block) column; that is,

v i,k,m: Q = Q.

;i+m k+m ;ik

A matrix possessing such structure is called "block circulant'.
The state w could be obtained directly by multiplying

Eq. (1) on the left by Q_l were it not for the awkward circum-

stance that the geodetic matrix is singular. This is, of

course, due to the fact that the survey data are invariant

under isometries. Under linearization this means that

there are vectors seW that are annihilated by Q:
fs = 0.

As usual, the set of all such vectors is itself a (vector
subspace of W called the "null space' of @, which we shall
symbolize as null(®); its orthogonal subspace will be
called the "domain'" of @, symbolized D(Q).! These are

defined also by the conditions:

11£Q is viewed algebraically, as a homemorphism, then null(Q) is its
kernel.
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se null(R) + Qs = 0;
null () N D(Q) = #;
null () UV D(Q) = W.

Dimensionality of null(Q) must be at least three,
since three linearly independent vectors can be generated
by an infinitesimal rotation of the lattice about some
central point and translations along two orthogonal direc-
tions. . These isometries are true global symmetries of the

problem, independent of the ring's configuration. 1In

addition, the CN ring possesses an accidental local
symmetry when N is even, raising the dimensionality to four.
(This will be demonstrated shortly.) The conjectures that
this is the maximum value and that it occurs only for CN
with N even are supported by numerical experimentation, but
they have not been proved.

Let us demonstrate explicitly the null vectors of @

in Cy. Using the block format described previously, we have

‘Vm: (SZs)‘m

]
2
n

= 3 (5)
;m im+1
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The simplest symmetry is (infinitesimal) rotation of the

lattice about its center. This amounts to setting

v k: duk=0 s dvk=l,

that is,

Using Eq.'s (4), this gives us

sind 0 -sinb
(QS)-m = ) + +
! -cosb 0 cosb
0
= 14
0

proving that it is indeed a null vector.
Translations are a little more involved. The state s

represents a translation provided that

By iterating, we get easily

k-1
s = W) s

b

(Since (wT)N = 1, the mod N subscript convention is satisfied.)
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Th . ~ _ T
en, using w = Oqw’,
i m-2 m-1 m
_ T, T T T
(QS);]m = O 4w (w™) + Q(w™) + w(w) s.q
i m-1
_ T T T
= 03 ww + Q0 + ww (w™) S;l
i T m-1
= 03 + Q + 1 (w™) s;l
L
= 0.

There are two linearly.independenf choices for 5.1 and
correspondingly the translation part of null(2) is two-
dimensional.

Interestingly enough, there is yet another symmetry
when N is even. This one can be associated with exciting
the N/2 harmonic variation in azimuth and is obtained by

setting

Putting this into Eq.(5),

n 0 0 0
(@s), = (-1) @ . + Q L + W = 0.
‘ - 1

Unlike translations and rotation, this ''skew' symmetry is

accidental: it arises from the particular configuration
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and is valid to first order only. It is not an isometry;

the qualification mgde earlier that the primary survey
variables are "almost always' sufficient to specify a state

is due to its existence. The measurement of a single nearest-
neighbor chord would be enough to break this symmetry.

For the general ring, null(Q) is still computable
provided that it is spanned only by isometries: one simply
constructs state vectors representing infinitesimal trans-
lations and rotations.

Fgg;ier analysis provides a useful, familiar tool for
processing data on a CN ring. Its power in this context
is derived from the fact that the unitary Fourier trans-
formation block-diagonalizes Q. Define the 2Nx2N transform

matrix

S,k = vI78 1 &7,

where £ = exp(27i/N), and1is the 2x2 unit matrix.? It

is easy to verify, using Eq.(3'), that

+ =
(s QS);km = 6km 2w (k) ,

~ .=k k
W(k) = % (@ & " +Q+ w k&) (6)
cosd® coské -1 -i sin® sink®6
- sinB cosk® i cosH sink®

2
Actually, any matrix would do.
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with 6 = 2n/N. The important point here is the 5km factor:

by transforming the problem, a complicated system of equations
of order 2N has been split into N simpler subsystems of

order 2. Each of these is solved easily by inversion,

provided that

det(W) = i sink6 [cosk® - cosb]

is not zero. Singularities (det W = 0) occur for k = 0,
k =1, and k = N/2. These obviously are associated with
the rotation, translation, and skew null vectors of the

preceding discussion.

By carrying out the mechanics of confirming Eq. (6) it
becomes clear that S will block-diagonalize any block
circulant matrix. Thus, the usefulness of Fourier analysis
in this problem is fundamentally a consequence of its CN

symmetry: in general, taking a Fourier transform will not

block-diagonalize Q.

In order to extend the method to general configurations
it seems natural to try replacing the Fourier set of basis
vectors with the true eigenvectors of Q. There is an objec-
tion to this, however: Dbecause { is not symmetric, its
eigenvectors need not be real or orthogonal to one another.
This is not catastrophic; algebraically, there is nothing
wrong with a complex non-orthonormal basis; numerically,
it is awkward and may lead to accuracy problems. Making a

singular value decomposition of @ is a way to get around this.
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It is interesting that, with all the attention paid
to eigenvalues and eigenvectors in the academic physics
curriculum, singular value decomposition is ignored. This
is probably a consequence of the emphasis placed on diagonal-
izing Hermitian matrices, representing observable operators.
It seems natural to ask whether one can diagonalize a

non-Hermitian matrix, yet the question is generally not

addressed.
The complete statement of the theorem defining singular

value decomposition is this: Given any mxn matrix A with

m>n there exist matrices U(mxn), Z(nxn) and V(nxn) such that

A= UZV+, (V+ = Hermitian conjugate of V) - (7)
+ + + '
UU=VV=VV=,i‘n,

L = diag (01,02,"'0n)'

The matrix V is unitary; U is '"generalized unitary' in the
sense that it is not necessarily square. The non-zero,

diagonal elements of I are the singular values of A; they

are obviously squaré roots of the eigenvalues of A+A; it
is conventional to use the positive square roots and to
order them so that ¢,>0,>...>0,>0. Of course, if m<n one
has an obvious corollary by taking the Hermitian conjugate
of Eq. (7).

The columns of U and V comprise a set of modes or

orthonormal basis vectors in the tangent plane and state
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space, respectively, that is the generalization appropriate

to the given ring of the harmonic basis of Fourier analysis.

Each mode in state space excites one and only one mode in

the tangent space;
g = uavt 4 oy = UTm

where is diagonal.

In addition to orthogonality, this representation of
Q possesses the advantage that the singular values are real;
in general, the eigenvalues of 2 would be complex. That
different bases are required in the two spaces is the price
one pays for dallying with a non-Hermitian matrix.

Although useful, singular value decomposition is really

peripheral to the main theme, which is to "solve" Eq.(1).

Section 3 The Moore-Penrose pseudoinverse

Singularity of Q means that the equation

Qw = m

has either no solution or a manifold of solutions, depend-
ing on whether m is in the range of @. 1In the latter case,
the manifold arise from the fact that if w* is a solution,
then so is w*+w', where w' is any vector in the null space

2N

of 2. We seek an unambiguous linear map X:R™" =+ W such

that w = Xm will, in some sense, be our accepted solution
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of the state for arbitrary m. One obvious criterion is
that the measurement defect, QX.m-m, should be small.

If we use a L2 norm, then this becomes:
choose X to minimize || (QX-1)m| |

which implies that X must satisfy

= = 8
2x PR(Q)' o? QIQX (8)

where PR(Q) is the projection operator onto the range of
2.

Interestingly enough, this is not sufficient to deter-
mine X uniquely, unlike most '"least squares" problems. For
example in doing a least squares fit of a theoretical ex-
pression to experimental data, one is imbedding a fairly
low dimensional manifold - generated by allowing the
parameters of the theory to vary over their allowed range
- into a much higher dimensional one - the space of all
possible data. Unless the surface intersects itself, the
imbedding is usually one-to-one: each point on the theory's
surface corresponds to exactly one set of parameter values.
Thus, if there is a unique point on the surface
closest to measured data, then there will be a unique
associated assignment of parameters. The situation is

fundamentally differenthere; the imbedding does not preserve
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dimensionality. Finding the solution in the measurement

space specifies not a state but a manifold of states.
So, we need another condition that selects a unique

state from this manifold. The natural one is to demand

that the preferred state be orthogonal to null(Q). Clearly,

this is appealing on heuristic grounds: the estimated
state should not contain any components that do not alter
the survey data from their design values. This is also

equivalent to requiring it to have minimum norm, since

the manifold of solutions is parallel to null(Q). That
is appealing too; it means that if one wanted to zero the
state by repositioning magnets, then the total movement
of magnets would be kept to a minimum, in the sense of a
L2 norm. This condition can be expressed algebraically

by the equation

where PD(Q) is the projector onto D).

For any matrix Q there is one and only one solution

for X in Eq.'s (8) and (9): the Moore-Penrose pseudoinverse,

symbolized Q°. It reduces to the inverse Q_l when Q is

T

non-singular, and if @ is rectangular with Q°Q non-singular,

then 2° is the usual least-squares matrix (QTQ)—l QT. In
our particular application neither of these conditions

holds, and the problem of computing 9 is more involved.
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Standard programs now exist, but they are somewhat in-
efficient when Q is sparse, as is the case here. This
is especially true for the CN ring, for which @ is block
circulant. The pseudoinverse is then block circulant
also, considerably reducing the complexity of its compu-
tation. We will not treat the computational aspects in
detail here; their denouement is postponed to another

memo. For now it suffices that

is the unique solution to Eq.'s (8) and (9).
When 2 is the direct sum of an invertible matrix,

A, and a zero matrix,

(It is easily verified that o* obeys the two defining
Eq.'s (8) and (9).) In particular, if A = diag (Alkz...

o s -1,-1 -1

00...0). This is useful in
conjunction with the singular wvalue decomposition of Q;

it enables us to calculate Q° via

- + T o_ Tyt
Q= Voyu' 2+ Q" = uapve - (1

UPC-140

A s

0)
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However, if one only wants to calculate Q+ and doesn't
care about the basis vectors per se, this is not an effi-
cient way to go about it. It would be comparable to
calculating the eigenvalues and eigenvectors of a matrix
in order to invert it; the former requires an (truncated)
infinite procedure, while the latter is finite. Eq. (10)
is useful, nonetheless, for selectively filtering or
purging unwanted ''generalized harmonics'" of the data and
solutions.

It was known previously that measurement errors in
survey data could lead to substantial low harmonic components
in magnet positions. If desired, these could be artificially
suppressed by deleting the low harmonic content of the
data, or byweighting the Fourier components in such a way
that the higher harmonics are reproduced exactly but the
lower are suppressed. Singular value decomposition
leads to a natural extension of this for the general lattice.
Using Eq.(10) we write

w=0m= Un' , where m' = QBV+m . an

The state w is a superposition of the columns of U weighted
according to the elements of m'. These columms - or
equivalently, the eigenvectors of oto - form a natural

basis for state space, and they reduce to the harmonic

basis when the ring is CN' We can associate with each



UPC-140
26

one its ''sequency'', an appropriate generalization of the
concept of frequency, which is the number of times neighboring

elements have opposite signs, i.e., the number of times that

U-k changes sign. Suppressing the low sequency singular

vectors is then the analog to suppressing low frequency

components of a harmonic expansion. One simply zeroes or

weights appropriate elements of m' just as before. The only
real difference is that the basis states are different in

measurement space and state space, since in general V#U.

Section 4 Closed orbits

Once the state has been estimated a decision must be
made on whether to actually move magnets to new positions.
The subject of errors plays an important role in this.
Originally, the magnets are located to within some place-
ment error o, of their design sites. It seems reasonable
to assume that the original placement error of each magnet
is isotropically distributed about its site and that there
are no correlations between sites. Survey data are then
taken, and this introduces another source of error: the
measurements themselves. Because of these the state
estimate will be different from zero even when the magnets
have been positioned perfectly. Using the usual ansatz
that models the errors as an additive random wvariable,
we can write the data vector m as

A

m = <m> + m,



